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Abstract. We propose two schemes for efficient broadcast key estab-
lishment that enables a sender to communicate to any subset of the
user-base by allowing a small ratio of free-riders. The schemes do not
require stateful receivers and one scheme is unconditionally secure. The
free-riders are unable to learn from the past whether they might become
free-riders for a certain transmission again.

We present a new trade-off facet for broadcast encryption, namely the
number (or ratio) of free-riders vs. the number of messages to be sent or
the number of keys stored by each user.

1 Introduction

A number of applications need solutions to the problem of transmitting data to
a group of receivers in a way that only the correct subset of all possible receivers
can decrypt the data: Pay-TV, Digital Rights Management (DRM) controlled
media, audio streaming, real-time business data, multicast communication are
current examples. The subset of receivers can change for every transmission (e.g.
pay-per-view) so an efficient scheme for a quick establishment of a secure channel
to the new subset is desirable.

In the literature one can find very efficient revocation schemes which are suit-
able for a small set R with |R| ≪ |N | of revoked receivers (e.g. pirate receivers
or traitors) compared to a huge number of total users N so that the broadcast
communication can only be decrypted by the users N − R. The most efficient
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known schemes [1–4] require a message header of length O(|R|) and user’s in-
dividual private key size of O(log(|N |)). However, these revocation schemes are
not intended nor suitable for a general subset case, e.g., cases where |R| ≈ 1

2 |N |.
The trivial scheme to address exactly all the users in the target set N −R is

to send the message encrypted individually for each user yielding a total number
of |N − R| messages to be sent via broadcast and only O(1) keys to be stored
by a user. This straightforward scheme is still the best known approach for the
case where |N −R| ≪ |N |.

In this paper we will consider the case where arbitrary subsets are addressed
by the sender. Assuming that any subset of N is chosen with equal probability
for a transmission an average number of 1

2 |N | messages needs to be sent via the
broadcast channel for every transmission if the trivial scheme is used. In order
to reduce this number it is possible to assign keys to certain or all subsets of
N and make these keys known only to the members of the subset. But even in
the best (and not realistic) case where each user is provided with a key for all
2|N |−1 subsets it belongs to, the numbers of bits needed to encode the subset
key identifier is approximately |N | so any scheme which addresses the exact
subsets would need to send O(|N |) message bits. Apart from that lower bound,
a trade-off between the number of keys stored by each user and the number of
messages to be sent to establish a transmission session key needs to be considered.
The number of colluders (users outside the target group cooperating to break
the scheme) the system can tolerate is another major parameter. Finally, we
are interested in the level of security (existence of one-way functions, number-
theoretic or information-theoretic security) we can establish.

1.1 Relaxed Requirements, New Trade-Offs

In order to set up schemes that are more efficient than sending |N | − |R| mes-
sages we are relaxing the requirement that only the users in the target group
T := N −R can decrypt the message by allowing a certain (small) number of
users in R to decrypt the transmission as long as every user in T can receive
the transmission. In this case new requirements on a relaxed scheme are to be
considered: The number of users who can receive a transmission they have not
subscribed to, i.e., the number of free-riders, shall be minimized and—following
economic, game-theoretic requirements (see e.g. [5])—a user shall not gain any
information whether she might be a free-rider for a future transmission by ex-
amining the past transmissions.

For example in a pay-TV scenario, we want to avoid a situation where two
users u1, u2 ∈ N are put in one subscription set so that each time user u1 sub-
scribes to a transmission the user u2 becomes a free-rider. The user u2 might
learn that he often becomes a free-rider for a certain kind of transmission pre-
ferred by u1 (e.g., Tarantino movies) and will stop subscribing for these trans-
missions to avoid unnecessary payment.

The main area of trade-off parameters to be considered in this relaxed notion
of broadcast encryption is the number (or ratio) of free-riders versus the message
header length versus the user key size. Other major requirements on a scheme



are collusion resiliency (i.e., the number of non-subscribers that may collude
without being able to access the secured transmission) and underlying security
assumptions (e.g., unconditional security versus computational security).

1.2 Related Work

The notion of broadcast encryption was introduced by Fiat and Naor in [6]. Their
work described several methods making it possible to remove users from the
target group by setting the requirement that only t users may collude where t ≤ k
(k-resiliency). One method achieves a message header of size O(k3 log |N |) and
a user key storage of O(k|N | log |N |) with unconditional security. The method
is improved to user key storage of O(k log2 |N |) by assuming the existence of
one-way-functions and to user key storage O(k log |N |) by assuming hardness of
root extraction modulo a composite.

Naor, Naor and Lotspiech [1] presented their complete subtree method that
is secure under any number of colluders (|R|-resiliency) and requires a header
length of |R| log(|N |/|R|) and O(log |N |) keys per user. An improved version,
the subtree difference method, requires header length 2|R| − 1 and O(log2 |N |)
keys per user. Both methods are very efficient in the |R| ≪ |N | case and use
PRNGs to assign keys in a tree structure.

Halevy and Shamir [2] presented a modified subset difference method with
O(log1+ǫ(|N |) key storage and O(|R|/ǫ) message header size where ǫ can be
chosen (ǫ = 1/2 is a natural choice).

Dodis and Fazio [7] extended all three schemes, i.e., CS, SD and LSD, to the
public key setting.

Boneh and Silverberg [8] showed that by using n-linear maps a collusion
secure scheme with a fixed size public key and message header length can be
achieved; Boneh and Waters [9] improved this by limiting a modified scheme to
bilinear maps. Both schemes do not provide information-theoretic security.

Luby and Staddon [10] considered the information theoretic case and give
general lower bounds for revocation schemes. Applying these bounds to the gen-
eral case (i. e., not assuming |R| ≪ |N |) shows that broadcast schemes with
unconditional security are never efficient in the sense that either the message
header length is large or the user key size is large.

1.3 Summary of Results and Outline

In the following section we will propose two new broadcast encryption schemes
operating in a pseudo-probabilistic way. Both schemes realize their efficiency by
accepting an adjustable ratio of free-riders. The first scheme is unconditionally
secure, but puts certain undesirable constraints on the abilities of attackers; the
improved scheme is information-theoretically secure and lacks these constraints.
We will give a calculation of the parameter trade-offs of our schemes and discuss
the collusion resiliency.



2 The Biased Sub-set Scheme1

2.1 Notations, Definitions and Basic Idea

Let N be the set of all users of a broadcast scheme and T be the set of users
which shall receive a certain transmission2.

Each user u ∈ N is provided with a fixed set of secret keys Ku which are
assigned to him before receiving any transmission. Each user owns at least one
individual key kindv

u ∈ Ku only known to him and the sender; the other keys
might also be shared between several users, which is not known to the users
sharing a key. During a transmission any user might receive further one-time
usage keys (session keys, key encryption keys) which are not re-used and do not
need to be stored after the transmission (thus we have a stateless receiver).

The basic idea of our scheme is to transmit the session key for a certain
transmission bit-wise in a probabilistic way to all users in N so that the users in
T receive on average more key bits than the users in N − T , thus only a small
fraction of the users in N −T is able to decrypt the transmission. Most users in
T are provided with enough bits of the session key to derive the full key after
exhaustive search. For the great majority of the users in N −T it is infeasible to
derive the session key in due time (e.g., before the transmission starts or before
the transmitted data becomes outdated).

We choose a security parameter s and the generated session key kS consists
of |kS | = s bits. This key is valid for one transmission only. For the users in T
a minimum of d < s bits is needed to derive kS (d is chosen according to the
computation power of the users). We assume potential attackers could be more
powerful than the ordinary users, so they only need d′ ≤ d < s bits to derive kS

in due time. The goal of the scheme is then that at a protocol step, the great
majority of users in T has received more than d bits when at the same time only
a small minority of users in N − T has received d′ or more bits (see Figure 1).

Our scheme works in two phases: First a number of messages each carrying
one key bit of kS is broadcasted (each message can only be decrypted by a
different subset of N provided with the right subset key) so that a certain number

of the users T ′ ⊂ T has received at least d bits (e.g., targeting |T ′|
|T | > 0.95). In

the second phase each user in T −T ′ is provided individually with the full session
key using the keys kindv

u for all u ∈ T − T ′.

Remark 1. Our approach broadcasts a secret by gradually broadcasting parts
(bits or shares) of the overall secret to certain subsets so that any party having
enough bits (or shares) can compute or recover the complete secret, e.g., the
session key of a pay-TV broadcast transmission. The gradual transmission of
secrets has been previously applied in the context of fair exchange [11]. In this

1 This work is subject of German patent DE 1020 0404 2094 B3 (issued 2005).
2 We will not use the notion of a set R of revoked users in this paper further as we

address the problem of broadcasting to arbitrary subsets, so the set N −T does not
refer to a small set of revoked users but to a set of users that have not subscribed
to a certain transmission but might subscribe again to future transmissions.
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Fig. 1. Distribution of received key bits

context there is an additional “verifiability” requirement, as released parts of
the secret have to be verifiable, such that a cheating party cannot gain valid
parts of an honest party’s secret, while sending random bits to this party. In
the broadcast encryption setting the verifiability requirement can be neglected
as the sender is trusted in this classical model and it is only a one-way release
of secrets. This gradual probabilistic broadcast of secrets represents, to the best
of our knowledge, a new probabilistic approach to broadcast encryption, which
may foster further advance in broadcast encryption.

2.2 Setting Up the Scheme

The sender selects NK subsets N ′
1 . . . N ′

NK ⊂ N , which are chosen uniformly
from the set of all subsets of N with 1

2 |N | elements, so |N ′
i | = 1

2 |N | for all
i = 1, . . . , NK. For each subset N ′

i a subset key kN ′

i
is generated and let kN ′

i
∈

Ku ⇔ u ∈ N ′
i . So each user knows the key assigned to each subset she belongs

to, but she does not know any other subset keys, so she stores ≈ 1
2NK subset

keys in total (note that key storage could be reduced heavily if a PRNG-based
algorithm is used to generate keys before usage, but then unconditional security
is not achievable).

We simplify the notion here as for implementation we do intend to split the
users N in equal-sized batches of users and choose the subsets and the keys
for each batch individually so we can parameterize the batch size, reduce the
number of necessary subsets and are able to add new users to the broadcast
scheme batch-wise after the scheme is in broadcasting operation. As the scheme
is then set up and run for each batch individually we can still assume N to be
the set of users, although |N | might be a rather small fixed-length number (e.g.
ten thousand) compared to the possible millions of users of the full broadcasting
group.

2.3 Broadcasting

For a transmission a set T ⊂ N of valid subscribers is given and a session key
kS is generated for this transmission.



In order to broadcast kS to the set T ⊂ N of users, the sender sorts the
subsets N ′

i so that we can assume for the sorted subsets Ni := N ′
π(i) that

Ni ≥T Ni+1 ∀i : 1 ≤ i < NK (1)

where for arbitrary subsets Na, Nb we define

Na ≥T Nb :⇔ |Na ∩ T | ≥ |Nb ∩ T | (2)

N2 ∩ T

N3 ∩ T

NNK ∩ T

...

N1 ∩ T N1 ∩ (N − T )

N2 ∩ (N − T )

N3 ∩ (N − T )

NNK ∩ (N − T )

N1:

N2:

N3:

NNK :

Fig. 2. Biased subsets

using a suitable permutation π for sorting the subsets. Loosely speaking, we
let N1 be the subset containing the highest number of subscribed users, N2 is
next with the second greatest bias towards the number of subscribers, so for
small indices i, the bias of the subsets Ni towards T is high, see Figure 2 for
illustration.

The scheme consists of two phases.

Phase 1 The session key kS will be transmitted bit-wise: Let kS,1, kS,2, . . . ,
kS,s denote the session key bits. First bit kS,1 is sent to subset N1 using subset
key kN1

, then kS,2 is sent to N2 etc. until all bits are sent. Let T ′
j ⊂ T be the

set of users in T which have received at least d session key bits after kS,j is
broadcasted.

Phase 2 For each user in u ∈ T − T ′
s we provide the full session key by using

her unique secret key kindv
u to encrypt an individual message for her and send it

via the broadcast channel.



We are now interested in the number of messages sent in the two phases and
the number of free-riders who can decrypt the session key although being a user
in N − T because they received d′ key bits or more.

Theorem 1. The number of free-riders given as a ratio of all users in N−T can

be approximated by FRrat = ΦN−T (d′) where ΦN−T is the distribution function

of the normal distribution N((1−ts)s,
√

sts(1 − ts)2) and where ts is the average

key-bit information received by the subscribed users per key-bit transmission: ts
can be approximated by ts = Φ−1(1− s

NK
) where Φ−1 is the quantile function of

the Gauss distribution N( |T |
2 ,

√

|T |
2

|T |
|N | (1 − |T |

|N | )).

The ratio of users receiving at least d bits in phase 1 is SUCrat = ΦT (d)
where ΦT is the distribution function of the the normal probability distribution

N(tss,

√

sts
2
(1 − ts)).

The number of messages to be sent in phase 2, which is the the number

of users not having received at least d bits in phase 1, can be given by (1 −
SUCrat)|T | = (1 − ΦT (d))|T |.

Proof. We first calculate the bias of the sub-sets N1 . . . Nj . As the subsets were
chosen uniformly we can approximate the binomial distribution of the values
t′i := |N ′

i ∩ T | for unsorted subsets N ′
i to be Gaussian i.e. ∀i = 1 . . . NK :

t′i ∼ N( |T |
2 ,

√

|T |
2

|T |
|N | (1 − |T |

|N | )). After sorting the NK subsets we have the most

biased s values ti := |Ni ∩ T | > |T |
2 for i = 1 . . . s with average values

ti = Φ−1(1 −
i

NK
) (3)

where Φ−1 be the quantile function of the Gaussian probability distribution

N( |T |
2 ,

√

|T |
2

|T |
|N | (1 − |T |

|N | )). As we assume the number s ≪ NK we approximate

the value ti ≈ ts for all i < s, so the bias’ of all the subsets used for transmitting
the key-bits are estimated to be equal to the bias of the last used sub-set in step
s (note that, the scheme is more efficient than approximated here as the other
biases are higher).

Using these approximations we can now calculate that each user in T has
received every key-bit with probability ts > 1

2 , thus he has received tss key-
bits on average and the number of key-bits received by each user is (by ap-

proximation) Gaussian distributed with parameters N(tss,

√

sts
2
(1 − ts)). For

the users is N − T we have the probability 1 − ts < 1
2 , thus the distribution

N((1 − ts)s,
√

sts(1 − ts)2).
Note, that on average a subscribed user has received 2s(ts−

1
2 ) more key-bits

than non-subscribed users. ⊓⊔

Trade-off corollary result of the theorem: The scheme can be parameter-
ized with the values s, d, d′, NK (and with |N | and |T |). From these values
we can calculate (by approximation) the free-rider ratio FRrat and success-ratio
SUCrat, hence the number of messages: (1 − SUCrat)|T | + s.



2.4 Batches of Users

As mentioned before we intend to divide the user set into batches of a certain
size which we still denote |N | to avoid unnecessary notations and run the scheme
for each batch serially; let the number of batches that make up the real user-base
be denoted by m so our total number of users is |N |m. We now face the problem
of selecting the parameters during the set-up phase: batch size |N |, number of
subsets NK – and for each transmission the parameters s, d and d′. There is
obviously a tradeoff: For a smaller batch size, we have better biases and need
less subsets (and less keys to be stored by the users), but we need to run the
whole scheme more often and increase the transmission length.

Finally we have to identify the user’s and attacker’s computation power in
order to select for a key size s the partial-key size values d and d′. In the next
section we will improve our scheme so that this is not necessary anymore.

2.5 Improvements Based on Secret Sharing

The scheme introduced in the previous section uses a bit-wise distribution of the
session key kS . The scheme’s security stems from the statistical certainty that
unauthorized users receive on the average fewer bits (d′ bits) of the session key
than authorized users (d bits).

This basic scheme has some shortcomings, which are summarized below:

– The non-authorized users who are not free-riders do receive partial informa-
tion as they receive a certain amount of key-bits.

– Authorized users have to perform an exhaustive search for up to s − d bits
of the session key. This could be costly.

– Each bit that an unauthorized user does not receive doubles his computa-
tional expense required for computing the full session key kS . However, this
still requires a rather large spread d−d′ between the number of bits received
by authorized users in T and those received by unauthorized users in N \T .
Furthermore, estimating the computational power of adversaries is difficult,
since exhaustive key-search can be easily parallelized and media content is
sufficiently popular to attract many users in participating in a parallelized
search for session keys.

Improved Biased Subset Scheme Distributing the secret session key in a bit-
wise manner can be seen as a naive way of sharing the secret and distributing its
shares to certain sub-sets, which cover the set of authorized users. We will see in
the sequel that we can overcome these disadvantages by applying a cryptographic
secret-sharing scheme.

We will use the notion of a (k, n) secret sharing scheme consisting of two
algorithms: Share and Reconstruct. Given a secret s the sharing algorithm
Share(s) outputs n shares s1, . . . , sn. Given shares si1 , . . . , sik

, the reconstruc-
tion algorithm Reconstruct(si1 , . . . , sik

) outputs the original shared secret s



so given any k of the n shares, the original secret s can be reconstructed, but
knowledge of less than k shares does not reveal any information.

For our construction one of the first proposed schemes (Shamir’s scheme:
[12]) can be used. This scheme shares a secret s ∈ F (e.g., F = Zp with p > n)
by choosing a random polynomial pol of degree k − 1 and with constant term s
(i.e., pol(0 ) = s) over F. The shares are defined as si := (i, s(i)), i = 1, . . . , n, i.e.,
each share is a point of the polynomial. Given k different shares, the polynomial
pol (and consequently the secret s = pol(0)) can be efficiently and uniquely
reconstructed by performing a Lagrange interpolation.

The idea of applying secret sharing to overcome the limitations of the basic
scheme is quite simple: The improvement is to replace the bit-wise broadcasting
by broadcasting shares of the secret to the subsets instead.

In Phase 1 of the improved scheme the sender applies a (d, s)-secret-sharing
scheme to the key kS , which results in the shares s1, . . . , ss. Instead of encrypting
and broadcasting single bits of the key kS , the sender encrypts the share s1 with
sub-set key kN1

and broadcasts the encrypted share (which can only be decrypted
by members of N1). Afterwards s2 is sent to N2, etc.

Given at least d shares a receiver can apply Reconstruct to efficiently re-
construct the secret kS . Therefore, instead of performing an exhaustive search
for the missing key bits, a receiver only performs a Lagrange interpolation to
compute the complete session key. Moreover any unauthorized user in N − T is
unable to gain any information about the session key as long as he receives less
than d shares. This is a significant improvement over the basic scheme, where
an attacker could use extra time or extra computation power to derive more
key-bits than ordinary users: the threshold value d in the improved scheme is a
hard threshold and provides unconditional security.

2.6 Resiliency of the Schemes

The proposed schemes are highly vulnerable to colluders being able to combine
their respective set of subset keys as these users would receive more key-bits or
shares than any other user. In the case of two users sharing their subset key pool
they would increase their portion of known subset keys from 0.5 to 0.75 each.
This is higher than a reasonable bias being achieved by sorted subsets, thus the
two users would become free-riders for all transmissions. Hence, the scheme does
not offer any resiliency for colluders being a member of the same user batch.
However, users from different batches can not gain anything from collusion as
the scheme is run serially for each batch and different key encryption keys would
be used. Therefore, the partial key information can not be combined at all.

The resiliency is therefore 1 from a worst-case point of view or dependent on
the number of batches from an average-case point of view. It can easily be seen
that the birthday paradox could be applied here if every user was assigned to a
certain user batch uniformly chosen. So the resiliency of our proposed schemes
can be approximated by the square root of the number of batches.

Fiat and Naor [6] describe a general applicable method to convert a scheme
with low resiliency (1-resilient) to one with high resiliency by randomly grouping



users in small random sets (batches) and applying 1-resilient broadcast encryp-
tion in parallel to broadcast shares of the broadcasted secret. This construction
could also be used to achieve higher resiliency for our scheme.

3 Further Improvements in Practice

3.1 Getting Rid of Free-Riders

It is possible to avoid the existence of free-riders if the biased-subset schemes are
connected with a revocation scheme (e. g., with Naor et al.’s subset-difference
scheme.

We take advantage of the following observations

– The set of free-riders is known by the sender. The set could be determined
before the protocol is started in order to take reasonable precautions.

– Different boradcast encryption schemes can be combined, i. e. they can be
run consecutively in a way that the first scheme distributes a pre-session
key that is used for encrypting all the communication of the second scheme,
thus, only the privileged users from the first scheme are able to take part
in the session key distribution of the second scheme and the result is a set
intersection operation of the privileged user sets. The same result can be
achieved if two independent pre-session keys are distributed with the two
schemes and the session key results from the exclusive-or operation of both
pre-session keys.

– The biased-subset schemes introduce with respect to suitable parametriza-
tion a small amount of free-riders while the revocation schemes are designed
for the exclusion of a small amount of revoked users so there is a straight-
forward concept to let the different schemes complement one another.

Taking this into account we can combine a revocation scheme with our scheme
by first identifying the free-riders of the biased subset scheme and then run the
revocation scheme before the biased subset scheme in order to distribute the
pre-session key that excludes the set of anticipated free-riders from the protocol
communication. As both protocols are unidirectional there is no real impact in
the decision which scheme is run first because a receiver could always (if capable)
record the broadcast and choose by itself which transmission is parsed first.

Note that the extension of the biased subset scheme with a revocation scheme
does not support unconditional security for the combined scheme because the
revocation schemes only offer computational security, but the construction is
still useful for practical implementations, especially when the sender wants to
avoid free-riders only for few transmissions.

In the annex we provide some sample data for a combined scheme consisting
of the improved biased subset scheme and Naor at al.’s SD scheme.



3.2 Re-Using Establishment Keys for Stateful Receivers

If the receivers are not stateless, the agreed key for a certain transmission can
be learnt and re-used as a subset key for a future protocol run. In practice it
is likely that the target set of one transmission is very similar to the target set
of a related transmission, so if the key is used as a future subset key the bias
towards the target set will often be much higher than that of a normal sorted
subset. Hence, the scheme will become more efficient for future runs when the
receivers have stored their transmission session keys for each time the receiver
was in the privileged set of users.

4 Conclusion

We proposed schemes for efficient broadcast key establishment that offer a trade-
off between the ratio of free-riders and other parameters (overall key size or mes-
sage header size). The schemes do not require stateful receivers and the second
one is unconditionally secure (disregarding the existence of free-riders). Free-
riders can also be prevented if revocation schemes are used together with our
proposed schemes.

5 Evaluation (Sample Data)

In this section we evaluate our probabilistic broadcast encryption scheme by
comparing its performance with that of existing broadcast encryption schemes.
Comparison will be mainly in terms of communication overhead (i.e., broad-
cast message length), storage (number of keys and public storage) per user,
as well as computational complexity per user. The latter will be measured in
terms of generic operations, i.e., we will count the number of XOR-, PRNG,
multiplication-, addition- and exponentiation operations.

Table 1. Performance results: our 1-resilient scheme compared to the 1-resilient
schemes of Fiat and Naor [6] and revocation schemes of Naor, Naor and Lotspiech
[1]. |N | = 10000, |T | = 5000, size of keys and shares is 64 bits

BE scheme keys p. user shares s bits (header) #ops p. user FRrat

Fiat&Naor [6] 10001 NA 10000 5001 0

Fiat&Naor [6] (OWF) 14 NA 10000 ≈ 24974 0

Fiat&Naor [6] (Root) 10000 PKs NA 10000 4999 0

Our scheme 1,000,000 1300 99200 650 0.05

Our scheme (Sect. 3.1) 1,000,014 1300 99200+138301 664 0

Trivial 1 210000 NA 64 1 0

Trivial 2 1 NA 320000 1 0

CS Revocation [1] 14 NA 320000 1 0

SD Revocation [1] 196 NA 639936 14 + 1 0



Furthermore, we focus our comparison on 1-resilient schemes and rather
small numbers of users n (in the order of 10000). These restrictions make com-
parisons between the different schemes possible: 1-resilient schemes are the basic
building blocks for constructing k-resilient schemes by clever batching of users
and serving each batch by an independent 1-resilient scheme. Note that this com-
parison is unfair to schemes being infinity-resilient; these are the trivial schemes
and the revocation schemes (CS, SD).

Table 1 shows several sample data values for the proposed share-wise key
distribution scheme. In all cases half of the user base is in the privileged set T
(i.e., |T | = |N |/2), while the other half is not (generic case), and resilience is
fixed as k = 1.

We summarize the performance for different user batch sizes |N |. The free-
rider ratios FRrat are a parameter so that different number of shares (the phase
1 messages of our scheme) s and total number of messages are calculated from
that parameter. The values are approximated average numbers.
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